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1 Introductory Overview

This paper presents a Bayesian approach to estimating the
risk (or the expected loss) of classifiers, and discusses some
experimental results and the issues that have to be consid-
ered when assessing the risk of classifiers. The develop-
ment of the proposed methodology was motivated by the
shortcomings observed in employing the bootstrap tests of
Margineantu and Dietterich [10] especially when applied
on classifiers that make only a small number of errors, but
whose misclassifications are associated with high-risk deci-
sions (small probabilities and large misclassification costs).

2 Extended Abstract

Developing and selecting statistical tests for assessing the
expected accuracy, loss, or risk of classifiers, or for com-
paring classification decisions of two classifiers has proven
to be a task as difficult as (or even more difficult than) cre-
ating new learning algorithms [4].

Accurate statistical testing of classification decisions be-
comes even more complicated in the case of domains with
skewed class distributions, or tasks with little data avail-
able for testing, but also in the case of classifiers that tend
to make a small number of mistakes (especially good clas-
sifiers that rarely misclassify high risk instances). Indeed,
the evaluation of classifiers can be viewed as a statistical
inference task on the confusion matrix, and anything that
causes small. The z tests based on the normal distribution
and other standard statistical tests are even more inaccu-
rate if arbitrary costs are associated with the classification
decisions and the goal is to estimate the total risk (or the ex-
pected cost) of a classifier, or the difference in risk between
classifiers. To address this issue, Margineantu and Diet-
terich [10] have proposed two new sets of tests for the cost-
sensitive evaluation of classifiers (BCOST and BDELTA-
COST), based on the bootstrap [5]. To correct for small
values in the confusion matrix, the proposed bootstrap tests
employ a uniform Dirichlet prior (or Laplace correction),
λ.

Experimental analyses of the normal distribution based
tests have shown that they compute confidence intervals
that are too wide and that the two bootstrap tests always
compute more accurate, much narrower confidence inter-
vals, for α ∈ [0.01, 0.1]. In the meantime both bootstrap
tests have also been shown to be sensitive to the choice of
the value of λ, and finding its optimal value is still an open
question.

Small counts (or zero counts) are notoriously difficult
[7, 6, 8, 9] and no statistical magic will solve the prob-
lem in the absence of any knowledge on how the values
were generated. But, because in the case of small counts
in confusion matrices generated by classifiers, typically the
user may be aware of different characteristics of the prob-
lem (e.g., class 1 is rare, instances form classes 2 and 4 are
always very far apart, etc.) and of the classifier (e.g., the
knowledge that a classifier chooses the decision boundaries
by balancing the errors) – all probabilities (of the confusion
matrix) are clearly dependent.

Therefore, in order to reduce the sensitivity of the tests to
the choice of uniform Laplace priors, we explored the pos-
sibility of estimating pij - the probability that an instance
from class j is classified into class i, by using Bayesian
methods. As mentioned above, we would like the priors
should take into consideration both, characteristics of the
problem and of the learning algorithms. We were espe-
cially interested in improving the quality of the estimates
of pij for the cases where the cell counts are small (i.e.,
rare errors, and especially costly rare errors) and in com-
puting more accurate estimates for the posterior distribu-
tion of risk. For a Bayesian approach, we expect that the
estimates may “borrow strength” form each other and help
to overcome the arbitrariness of the uniform Laplace cor-
rection used by the bootstrap tests.

We employed several structural models for estimating p ij

and different priors for their parameters. For the likelihood
we used the multinomial, but, as in any real-world appli-
cation problem, any available information should be used
to define each of them. The models described below have
been choosen to be not very complicated or detailed, be-



cause our main goal is to present the reader with the general
framework of the Bayesian approach such that he or she
will be able to construct and apply the appropriate model
for a given task. The goal is not to spend a great effort on
modeling, but just enough to compute accurate estimates
of the risk (if one would attempt to have a detailed model
pij(x), then he could just forget about the learning machine
and create a Bayesian model for the original problem thus
providing automatically all the answers...).

The first model that we employed is a saturated log-linear
model:

log(pij) = μ + μ1
i + μT

j + μ1,T
ij (1)

where μ1
· model the row (predicted class) effects, μT

· model
column (true class) effects, mu1,T

·,· the interactions between
rows and columns. and μ is a scaling parameter (T stands
for the true/actual class).

Next we employed a simpler direct model, that models sep-
arately the diagonal values (the probability of correct clas-
sification) and the off-diagonal values:

pjj = dj ∗ πj (2)

pij = (1 − dj) ∗ πi ∗ πj/(1 − πj) i �= j (3)

This model could be appropriate for the case in which the
user has some estimates of the true class proportions πj ,
and some estimate of the maximum error (0/1 loss), 1−d j .

If the class variable is ordered and errors are more likely
to be made between adjacent classes (or their likelihood
decreases with the distance between the classes), then the
following model may be employed:

pjj ∝ dj ∗ πj (4)

pij ∝ πj ∗ (1 − dj) ∗ bm, i �= j, m = i − j; bm ↓(5)

.

To assess our proposed approach and the different models
presented above, we have run validation tests on two syn-
thetic domains. This (using synthetic tasks) was done in
order to be able to generate a large number of instances and
to have a good estimate of the “true” probabilities (we ap-
proximated the true pij by the estimate p̂ij on a million test
instances). For all the models we have run MCMC to com-
pute the posterior distribution of pij and the distribution of
risk, when a (mis)classification loss matrix was available.

First we looked at the probability estimates and assessed
their deviation from the truth (

∑ |p̂i,j − pi,j |). The satu-
rated model has computed the best estimates for the cells

corresponding to small probability values, whereas the
other models exhibited large errors on those cells (which
may result in distorted estimates especially in the case of
tasks with very skewed class distributions or in the case of
very accurate classifiers). The most overestimated small
probabilities were obtained when we used the diagonal
model (2,3). When we assessed the computed risk distri-
bution, again, the saturated model was the most accurate,
although all models showed a tendency to underestimate
the risk.

For the problem of classifier evaluation, Bayesian methods
may be judged to be an awkward step back from a purely
data driven philosophy. Leo Breiman’s “two cultures” pa-
per [1] discusses this issue in detail. Given the complexity
of the task of evaluating classifiers and the fact that users
and testers of machine learning-based algorithms usually
have prior knowledge on some characteristics of the task
and/or general behavior of the classifier, we consider, and
our experiments show it, that employing the proposed prob-
abilistic models represents a meaningful approach.
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