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Deep Belief Networks (DBN) are generative models with many layers of hidden causal variables, recently
introduced by Hinton et al, along with a greedy layer-wise unsupervised learning algorithm. The building
block of a DBN is a probabilistic model called a Restricted Boltzmann Machine (RBM), used to represent
one layer of the model. We show that RBMs are universal approximators of discrete distributions. We then
study the question of whether DBNs with more layers are strictly more powerful in terms of representational
power. This suggests another criterion for DBNs, obtained by considering that the top layer can perfectly fit
its input.

Introduction
Learning algorithms that learn to represent functions with many levels of composition are said to have a
deep architecture. Bengio and Le Cun (2007) point to results in computational theory of circuits to strongly
suggest that deep architectures are much more efficient in terms of representation (number of computational
elements, number of parameters) than shallow ones. Hinton, Osindero, and Teh (2006) introduced a greedy
layer-wise unsupervised learning algorithm for Deep Belief Networks (DBN). The training strategy for such
networks may hold great promise as a principle to help address the problem of training deep networks. Upper
layers of a DBN are supposed to represent more “abstract” concepts that explain the input observation x,
whereas lower layers extract “low-level features” from x.

Background on RBMs and DBNs
A RBM with n hidden units is a parametric model of the joint distribution between hidden variables hi and
observed variables xj , of the form

P (x,h) ∝ eh′Wx+b′x+c′h

with parameters θ = (W, b, c). We consider here the simpler case of binary units. It is straightforward to
show that P (x|h) =

∏
i P (xi|h) and P (xi = 1|h) = sigm(bi +

∑
j Wjihj), and P (h|x) has a similar

form. Although P (x) is not tractable, it can be computed easily up to a normalizing constant, and a good
stochastic approximation of ∂ log P (x)

∂θ can be computed, called the Contrastive Divergence gradient.
A DBN with i layers models the joint distribution between observed variables xj and i hidden layers hk

made of binary units hk
l (here all binary variables), as follows:

P (x,h1,h2, . . . ,hi) = P (x|h1)P (h1|h2) . . . P (hi−2|hi−1)P (hi−1,hi)

Denoting x = h0, P (hk|hk+1) has the form P (hk|hk+1) =
∏

i P (hk
i |hk+1) and P (hk

i = 1|hk+1) =
sigm(bi +

∑
j W k

jkh
k+1
j ), and P (hi−1,hi) is a RBM.

RBMs are Universal Approximators
RBMs with data-selected number of hidden units become non-parametric and possess universal approxima-
tion properties relating them closely to neural networks:
Theorem 0.1. Any distribution over {0, 1}n can be approximated arbitrary well with a RBM with k + 1
hidden units where k is the number of input vectors whose probability is not 0.
Theorem 0.2. Let u be an arbitrary distribution over {0, 1}n and let P be a RBM with marginal distribution
p over the visible units such that KL(u||p) > 0. Then there exists a RBM Q composed of P and an additional
hidden unit with marginal distribution q over the visible units such that KL(u||q) < KL(u||p).



Open Questions
Let Rn

i be a Deep Belief Network with i+1 layers, each of them composed of n units. Can we say something
about the representational power of Rn

i as i increases? Let us denote Dn
i the set of distributions one can

obtain with Rn
i . It is shown in Hinton et al. (2006) that Dn

i ⊆ Dn
i+1. Two questions remain:

• do we have Dn
i ⊂ Dn

i+1, at least for i = 1?

• what is Dn
∞?

Trying to Anticipate and Memory-Based Top Layer
The proposed greedy training of Deep Belief Networks means that only one layer is trained at a time. In that
greedy phase, one does not take into account the fact that other layers will be added next.
Instead of directly maximizing the likelihood, this greedy strategy maximizes a lower bound on it, called the
variational bound (Hinton et al., 2006):

log P (h0) ≥
∑
h1

Q(h1|h0)
[
log P (h1) + log P (h0|h1)

]
−

∑
h1

Q(h1|h0) log Q(h1|h0)

Once the weights of the first layer are frozen, the only element that is optimized is P (h1).
We can show that there is an analytic formulation for the distribution P ∗(h1) that maximizes this variational
bound (but not necessarily the likelihood P (h0)):

P ∗(h1) =
∑
h0

p0(h0)Q(h1|h0)

where p0 is the empirical distribution of input examples. One can sample from it by first randomly sampling
an h0 from the empirical distribution and then propagating it stochastically through Q(h1|h0). Using the
first theorem stated before, there exists an RBM that can achieve this optimal distribution P ∗(h1).
At that point, we can make a very important comment:
Using a RBM that achieves this “optimal” P ∗(h1) (in terms of the variational bound), the Kullback-
Leibler divergence between the empirical distribution and the distribution of our model is equal to
KL(p0||p1) where p0 is the empirical distribution and p1 is the distribution one obtains when starting from
p0 clamped in the visible units of the lower layer (h0), sampling the hidden units h1 given h0 and then
sampling a h0 given h1. This is equivalent to making one “forward-backward pass” in the first RBM trained.

One might wonder why this is important. Even with the best possible model for P (h1,h2) (according to the
variational bound), i.e., the model that can achieve P ∗(h1), we obtain a KL divergence equal to KL(p0||p1).
For this KL divergence to be 0, one should have p0 = p1. But p0 = p1 could have been obtained with a
one-level DBN (i.e. a single RBM) that perfectly fits the data, so that the second layer h2 seems useless.
Does that mean that adding layers is useless? We believe the answer is no; even if adding layers does not
allow to perfectly fit the data (which is not sure because we optimize the variational bound rather than the
likelihood), the distribution of our model is closer to the empirical distribution than a single RBM (we do
only one “forward-backward pass” instead of doing an infinity of them). Furthermore, the extra layers allow
to regularize and hopefully obtain a representation in which even a memory-based top layer could generalize
well. This approach suggests using alternative criteria to train DBNs, that approximate KL(p0||p1), and
which can be computed before h2 is added, but that unlike Contrastive Divergence, take into account the
fact that more layers will be added later.
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