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Many decision-making problems can be formulated in the framework of a partially observable Markov
decision process (POMDP) [5]. The optimality of decisions relies on the accuracy of the POMDP
model as well as the policy found for the model. In many applications the model is unknown and
learned empirically based on experience, and building a model is just as difficult as finding the asso-
ciated policy. Since the ultimate goal of decision making isthe optimal policy, it is advantageous to
learn an optimal policy directly from experience, without an intervening stage of model learning.

A major difficulty in direct policy learning arises from the fact that the belief state, which summarizes
the history, is not available when the POMDP model is unknown. Carrying a long history of actions
and observations is cumbersome and inefficient. To solve therepresentational issue, many methods
have been proposed to compress the history and express it in acompact manner, these including
reactive policies, history truncation [4, 3], finite policygraphs [8], finite state controllers [1], utile
distinction HMMs [10], and recurrent neural networks [2].

We introduce theregionalized policy representation(RPR), a parametric framework for representing
a stochastic policy in the absence of a POMDP model. The RPR expresses the policy as a distribution
over actions given the history of actions and observations.The dynamics of decision states are driven
jointly by actions and observations, the action-dependence implementing the control in the world-
state space and the observation-dependence reflecting the agent’s perception of the world-state.

We employ an off-policy method [9] to learn the parameters ofan RPR, using a soft max exploration
policy to ensure full exploration. The experience from the behavior policy is used to construct the
empirical value function, given the RPR parameters. We thenupdate the RPR parameters by choosing
new parameters to maximize the empirical value function. Weperformmaximum-value(MV) estima-
tion of the RPR parameters by an iterative procedure similarto expectation maximization (EM). Our
algorithm is different from conventional EM in that it maximizes a value function instead of a like-
lihood function. This difference gives rise to some complications technically and yet offers insights
into reinforcement learning. One interesting point worth mentioning about our EM-like procedure
is that the E-step not only adjusts the posterior probability distribution of the decision state but also
recomputes the expected future rewards. This update step reflects the change in future rewards when
the updated RPR policy is followed.

The bound optimization nature of our algorithm makes it a more suitable choice than gradient based
approaches [8, 1] for handling the hidden decision states, since it is less prone to local optima. More-
over, our formulation is amenable to Bayesian learning, which gives us a flexible framework for more
general learning situations such as experience transfer and multitask learning.

We demonstrate the performance of RPRs on benchmark problemHallway2 [6], in comparison to
SARSA(λ) [7], RL-LSTM [2], and Utile distinction HMM (UDHMM) [10]. The results are summa-
rized in Table 1, where UDHMM used more than 450 episodes and the RPR used 355 episodes. It
is seen that the RPR outperforms the best competing algorithms, with roughly the same number of
episodes.
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Table 1: A comparison of the RPR to other reinforcement learning algorithms on Hallway2

Method Goal rate (%) Median Steps to reach the goal
Random Walk 26 > 251

SARSA(λ) [7] 77 73
RL-LSTM [2] 94 61
Utile distinction HMM [10] 92 62
RPR 97 46
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