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Abstract

We analyze a simple, Bellman-error-based approach to generating features, or basis functions, for value-function
approximation in MDPs and reinforcement learning. We show that this procedure generates orthogonal basis func-
tions that provably tighten approximation error bounds. We also prove sufficient conditions for a basis function that
approximates the Bellman error to improve the value-function. Our work is the first rigorous analysis on the effect of
new basis functions on value-function accuracy.

1 Introduction
We extend recent efforts in feature discovery for value-function approximation [3; 2]. We consider approaches based
upon the Bellman error [2] in the context of linear value-function approximation. Specifically, we consider a general
family of approaches that iteratively add basis functions to a linear approximation architecture in a manner where each
new basis function is derived from the Bellman error of the previous set of basis functions. We call these Bellman
Error Basis Functions (BEBFs).

Our main theoretical contribution is to show that BEBFs form an orthonormal basis with guaranteed improvement
in approximation quality at each iteration. Since the Bellman error can be a quite complicated function that may not be
any easier to represent than the true value-function, we consider the use of a Bellman error approximator to represent
the new basis function. Our work is distinguished from earlier, similarly motivated work [2], in that we prove a general
result showing that the approximation quality can still improve even if there is significant error in our estimate of the
Bellman error.

2 Formal Framework and Notation
Due to space limitations, we assume that the reader is familiar with value-function approximation for MDPs and
provide a very terse description of our notation. Our theory so far focuses on the case where the policy is fixed. Given
a state si, the probability of a transition to a state sj , is given by Pij with expected reward of R[si]. We use P and
R to stand for the matrix and column-vector representation of these terms. V [si] is the expected total γ-discounted
reward for state si. We define the Bellman operator T on value-functions as (TV )[si] = R[si] + γ

∑
j PijV [sj ]. It is

a contraction in the weighted L2 norm [5]: ‖V ‖ρ =
√∑n

i=1 V [si]2ρ[si], where ρ is the stationary distribution of P .
Unless otherwise indicated, we will use ‖ · ‖ for ‖ · ‖ρ.

A linear value-function approximator represents the value-function as a linear combination of features or basis
functions: V̂ =

∑k
i=1 wiφi, where Φ = {φ1 . . . φk} is a set of linearly independent basis functions of the state, and

w = {w1 . . . wk} is a set of scalar weights. For a set of weights w expressed as a column vector, V̂ = Φw.
Methods for finding reasonable w given Φ and a set of samples include linear TD [4], LSTD [1] and LSPE [6].

We refer to this family of methods as linear fixed point methods because they all solve for the same fixed point:
V̂ = Φw = Πρ(R + γPΦw), where Πρ is an operator that is the ρ-weighted L2 projection into the span of Φ,
that is, if ∆ = diag(ρ), Πρ = Φ(ΦT ∆Φ)−1ΦT ∆. We will use Π as shorthand for Πρ unless otherwise indicated.
The closest point (in ‖ · ‖ρ) in the span of Φ to V ∗ is ΠV ∗, but the linear fixed point methods are not guaranteed to
find this point. However, the distance from V̂ to V ∗ can be bounded in terms of the distance from ΠV ∗ to V ∗ [5]:
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‖V ∗ − V̂ ‖ ≤ 1√
1−κ2 ‖V ∗ − ΠV ∗‖. The effective contraction rate κ arises from the combination of the Bellman

operator, T , with contraction rate γ, and the L2 projection. For our purposes, we conservatively assume κ = γ.

3 Feature Generation
We address the following question, also considered by others [3; 2]: Given a set of basis functions φ1 . . . φk and a
linear fixed-point solution V̂ , what is a good φk+1 to add to the basis?

The Bellman error is an intuitively appealing approach to expanding the basis since it is, loosely speaking, pointing
towards V ∗. We say that φk+1 is a Bellman Error Basis Function (BEBF) for V̂ = Φw if φk+1 = T V̂ − V̂ .
Constructing Φ′ = [Φ, φk+1] (concatenating column vector φk+1 to design matrix Φ) ensures that T V̂ is in the span
of Φ′ (trivially by picking new weights w′i = wi for 1 ≤ i ≤ k, and w′k+1 = 1). While this formulation ensures that
V̂ can be represented, it leaves many open questions such as: (1) How does increasing the expressive power to include
T V̂ affect the fixed-point error bound?; (2) How does performance degrade if, due to the difficulty of representing
φk+1 exactly, φ̂k+1 ≈ φk+1 is used instead? Our preliminary results:

Lemma 3.1 Let V̂ be a linear fixed-point solution using the basis Φ = {φ1 . . . φk}, then the BEBF φ′ = T V̂ − V̂ is
orthogonal to the span of Φ.

Corollary 3.2 A sequence of normalized BEBFs φ1 . . . φk forms an orthonormal basis.

Corollary 3.3 For a system with n states, V ∗ can be represented exactly using a sequence of no more than n BEBFs.

Theorem 3.4 Let V̂ be the linear fixed-point solution using a sequence of normalized BEBFs φ1 . . . φk. If ‖V ∗ −
V̂ ‖−‖V ∗−T V̂ ‖ = x, then for new BEBF φk+1, with Φ′ = [Φ, φk+1], and corresponding Π′, ‖V ∗−ΠV ∗‖−‖V ∗−
Π′V ∗‖ ≥ x.

This states that the bound tightening from the new basis function is at least as strong as value-iteration. In practice,
we may be forced to use an approximate representation error for a BEBF [2]. For φ̂k+1 ≈ φk+1, we can state some
qualitative results. The first is that expanding the basis in the general direction of V ∗ ensures progress:

Lemma 3.5 If φ̂k+1 is not orthogonal to V ∗− V̂ , then there exists a β such that ‖V ∗− (V̂ + βφ̂k+1)‖ < ‖V ∗− V̂ ‖.
Moreover, if φ̂k+1 is not in the span of Φ, then for Π′ = Π ∪ φ̂k+1, ‖V ∗ −Π′V ∗‖ < ‖V ∗ −ΠV ∗‖.

This lemma is encouraging, but the ease or difficulty in obtaining a φ̂k+1 that points towards V ∗ may not be obvious
since the true direction of V ∗ typically isn’t known until the problem is solved exactly. The angle between φ̂k+1 and
φk+1 provides a weaker, sufficient (though not necessary) condition for ensuring progress:

Theorem 3.6 If (1) the angle between φk+1 and φ̂k+1 is less than cos−1(γ) radians and (2) V̂ 6= V ∗, then there
exists a β such that ‖V̂ + βφ̂k+1‖ < ‖V ∗ − V̂ ‖. Moreover, if conditions (1) and (2) hold and φ̂k+1 is not in the span
of Φ, then for Φ′ = Φ ∪ φ̂k+1, and corresponding Π′, ‖V ∗ −Π′V ∗‖ < ‖V ∗ −ΠV ∗‖.
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