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Motivation

Multiple kernel learning has recently been a topic of interest [3, 4]. The setting
is the following: given p kernel functions K1, . . . ,Kp that are potentially well
suited for a given problem, find a linear combination of these kernels such that
the resutling kernel K =

∑
λpKp is ”optimal” in some sense.

The aim of this presentation is to revisit some of the proposed approaches
and to give both a well founded theoretical justification as well as a en efficient
algorithm to learn this linear combination of kernels.

Theoretical justification

Margin has been argued to be a good quantity to maximize and that is the
reason why the objective function that (hard margin) SVMs minimize is the
invert squared margin. Let us define M(K) as the minimum of this objective
function for a kernel K. Based on this motivation, it has often been suggested
to find the kernel matrix by minimizing M . We would like to point out that one
has to be cautious with this approach. Indeed, the SVM objective function has
been derived to find the hyperplane given a kernel, but there is no guarantee that
this is sensible quantity to optimize for learning the kernel matrix. Actually,
one can obtain arbitrary large margins by multiplying the kernel matrix by a
large constant.

A well funded framework is to consider the λi as hyperparameters and to
learn them using a model selection criterion [1]. Based on generalization error
bounds for SVMs, [1] suggests for instance to use tr(K)M(K). This is equiv-
alent to minimize M(K) under constraint tr(K)=constant. Since the SVM is
invariant under translation, one can also use the recentered (in feature space)
kernel matrix K̃ and the constraint become

∑
λitr(K̃i) = constant, which is

almost the same as the formulation of [3] but with a slightly different linear
constraint.

Efficient optimization

The objective function M(
∑

λiKi) is convex in λ. One can also compute in
closed form its gradient and Hessian. We thus propose to find the coefficient
λ by a Newton-type optimization, which is much more efficient than the SDP
formulation of [3]. In our experiments only couple of steps are necessary to
reach convergence. The most expensive part of the algorithm is the evaluation
of M which requires an SVM training.
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Linear case and feature selection

One can consider a special case where each kernel is the outer product between
the training data on a given dimension: [Kp]ij = xipxjp. The multiple kernel
learning algorithm will effectively do feature selection in this case [2]: at the
end of optimization, the λi corresponding to non important features are zero
(or have small values).

Another interesting advantage of the linear kernel is that one can train the
SVM by a primal minimization. Since this is a min-min problem (as opposed
to a min-max problem if the SVM is trained in the dual), the weight vector w
and the parameters λ can be optimized simultaneously. Again, we propose an
efficient Newton-type method for this purpose.

This algorithm was applied in a multiclass text classification scenario. The
multiclass training is done in a 1-vs-the-rest setting, but by having the same λi

for all classifiers, we were able to achieve simultaneous feature selection (i.e. all
classifiers use the same set of features).
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Figure 1: Accuracy of an SVM on the 20 Newsgroup dataset. The features have
either been selected by Information Gain or according to the scaling factors λi.
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