
Category: Learning algorithms Preference: oral 1

Generalization to a zero-data task: an empirical study

Hugo Larochelle, Dumitru Erhan and Yoshua Bengio
Dept. IRO, Université de Montréal, C.P. 6128, Montreal, Qc, H3C 3J7, Canada

{larocheh,erhandum,bengioy}@iro.umontreal.ca
http://www.iro.umontreal.ca/∼lisa

We study the problem of generalization to a zero-data task. A zero-data task corresponds to a learning problem for
which no training data is available and only a description d(y) of the task y is given. Though learning in such a scenario
might seem impossible, such tasks can actually be found in the context of a number of fields: for instance, in drug
discovery [1], where one needs to decide whether a candidate molecule x is a possible cure for a new disease y, or in
the so-called “cold start” problem of recommender systems, where one needs to determine whether a new item y (movie,
album, book, etc.) should be recommended to a user x or not. It is also related to the one sample learning problem [2],
where only one training example per class is provided in a classification setting.

There are at least two approaches to learning zero-data tasks, which correspond to two different views of the problem.
We refer to these approaches as the input space view and the model indexation view. The input space view considers the
input of the learning problem to be the concatenation of a sample with the corresponding task description [x, d(y)]1. The
desired output for the respective task y, noted z(y), can be 1 if sample x is from class y and 0 otherwise for a classification
setting, or a value of the dependent variable associated with x in task y, in a regression setting. Then, to obtain an answer
for a new task y∗ from a sample x∗, the input [x∗, d(y∗)] is provided to the trained model.

The model indexation view considers the model fy(x) for a task y to be a function of its description d(y), i.e. fy(x) =
gd(y)(x). For example, gd(y)(x) could be a Gaussian density where the mean is a function of d(y), or it could be a
linear classifier (perceptron) for which the weights are a function of gd(y). To train the “model of models” gd(y)(x), one
can simply optimize its parameters to minimize the average cost for each pair of samples and tasks from the training set
1
T

∑

xt,yt,zt
C(zt, gd(yt)(xt)). Though not all algorithms can be cast in this framework, it is more general than the input

space view and hence might give rise to more interesting models. Indeed, the input space view simply corresponds to
setting gd(y)(x) = g ([x, d (y)]).

We conducted experiments in a classification and a ranking setting, in order to evaluate these two approaches. We
tested the four following models on these problems. We evaluated the input space view principle using an SVM model
with a Gaussian and a polynomial kernel and we tested the model indexation view principle using the following models:

1. a Gaussian model for which the mean of the gaussian is a linear function of description, i.e.
X |Y = y ∼ N (A · d(y), Σ) where Σ is a diagonal matrix with individual variances for each components: different
values of y imply different gaussian centers A · d(y). This model can be trained to maximize the likelihood of the
samples xt given their corresponding classes and this problem can be solved analytically; using flat priors over the
classes and Bayes’ rule we can recover the posteriors. We will refer to this linear generative model as LinGen.

It can be shown that the decision rule for this model is as follows:
argmaxygd(y)(x) = argmaxy (d(y)′B) x − d(y)′BUB′d(y) (1)

where B = 2AΣ−1 and U = 1
4Σ. This decision rule is the same as the one of a perceptron with weights (d(y)′B)

and bias −d(y)′BUB′d(y) for class y.

2. a linear model that uses the decision rule of equation 1 but that is trained on the following discriminative criteria:

−
∑

xt,yt

log(softmax(d(yt)
′Bxt − d(yt)

′BUB′d(yt)))

where the softmax normalization constant is computed over all the training classes only, not the test classes. We
will refer to this linear discriminative model as LinDisc 1-vs-all.

3. a linear model that also uses the decision rule of equation 1 but that is trained on the following discriminative criteria:

−
∑

xt,yt

∑

y∗

(

zt(y
∗) log(sigmoid(gd(y∗)(x))) + (1 − zt(y

∗)) log(1 − sigmoid(gd(y∗)(x)))
)

where again gd(y∗)(x) = d(y∗)′Bxt − d(y∗)′BUB′d(y∗). The sum over y∗ is also done only over the training tasks
(classes). We will refer to this other linear discriminative model as LinDisc 0-1.

The first experiment comes from a license plate character recognition problem. The training data corresponds to
samples from different types of characters and a 7 × 5 pixels description of these characters. Testing corresponds to
classifying samples from two types of characters not found in the training set (see figure 1 for an illustration of the
problem). We selected randomly 6 of the 40 possible characters (0 through 9, A through Z and 4 special characters) found
in the dataset, from which we constructed all possible binary classification problems (a total of 15) on which the different
models were evaluated. We varied the size of the training set by varying the number of types of characters that it contained.

1The square brackets correspond to concatenation



Figure 1: Illustration of classification
experiment

LIFT
Agent LinDisc 0-1 SVM

A 168 105
D 153 108
F 97 150
H 171 161
I 163 130
S 173 106
U 95 105

Figure 2: Results on the drug discovery
experiment

10 20 30 40
0

10

20

30

40

50

T
es

t e
rr

or
 (

%
)

Number of characters in the training set

 

 
LinDisc−0−1

10 20 30 40
0

10

20

30

40

50

T
es

t e
rr

or
 (

%
)

Number of characters in the training set

 

 
LinGen

10 20 30 40
0

10

20

30

40

50

T
es

t e
rr

or
 (

%
)

Number of characters in the training set

 

 
LinDisc−1−vs−all

10 20 30 40
0

10

20

30

40

50

T
es

t e
rr

or
 (

%
)

Number of characters in the training set

 

 
SVM + RBF
SVM + Poly d=2

Figure 3: Estimation of the generalization performance on a zero-data task for
LinGen, LinDisc 1-vs-all, LinDisc 0-1 and SVM

We also report a set of experiments performed in the context of virtual screening for drug discovery, which is a ranking
problem. In this domain, one is interested in building a decision-making algorithm that would identify reliably molecular
compounds x that are active in the presence of a biological agent y (i.e., they “could cure the disease”). The dataset that we
use consists of 7 biological agents, along with features for each of them. The experimental setup was simple: the algorithm
is presented with the training data from 6 agents and is tested on the data from the remaining agent. Given that the dataset
is unbalanced, we use a ROC-like measure called LIFT[3]. It corresponds roughly to a point on the ROC curve and the
higher the value, the better, with 100 corresponding to a random binary decision.

The hyper-parameters of all the models were tuned on a validation set which contained samples from the same classes
as those of the training set. Figure 3 displays the results for the character classification problem. The classification error
on a zero-data task is estimated by computing the average of the classification errors on the 15 binary problems. The best
model in term of estimated generalization error is the SVM model with a Gaussian kernel, which can achieve an error of
2%. The best model indexation view model is LinDisc 0-1. We can also observe that the progression of the error with
respect to the number of training classes has a U shape for models LinGen and LinDisc 0-1. This is rather counter-intuitive,
as we might expect that more training classes will result in better generalization to new classes. This phenomenon might
be explained by the fact that the models have a hard time fitting the training data as there are more training classes, given
that these models have a fixed capacity.

In the case of the drug discovery experiment, only the SVM model and LinDisc 0-1 could be used, the other models
being only adequate for classification problems. The results are reported in table 2. Both the SVM and the LinDisc 0-1
models manage to generalize successfully to many of the new tasks. LinDisc 0-1 is clearly better and taken together the
algorithms manage to generalize relatively well to 6 out of 7 tasks.

The performance of the SVM on the character problem is impressive, but it is most likely due to the greater capacity of
the Gaussian kernel; the other models are bilinear. Therefore, the fairer comparison is between these models and an SVM
with a polynomial kernel of degree 2, whose performance we also plot. Both LinDisc 0-1 and the polynomial SVM reach
about 5% error. In the future, we plan to introduce non-linearity in the models that we presented above so that we could
compare with the RBF kernel. We have investigated many other options for the drug discovery problem, including neural
network architectures and a kernel algorithm—the results presented in table 2 are quite encouraging as the problem is quite
challenging (the other learners did not perform nearly as well).

References
[1] Dumitru Erhan, Pierre-Jean L’Heureux, Shi Yi Yue, and Yoshua Bengio. Collaborative filtering on a family of biological targets. Journal of Chemical

Information and Modeling, 46(2):626–635, 2006.

[2] Erik Miller. Learning from one example in machine vision by sharing probability densities. PhD thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, 2002.

[3] Gregory Piatetsky-Shapiro and Sam Steingold. Measuring lift quality in database marketing. SIGKDD Explor. Newsl., 2(2):76–80, 2000.

2


