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In Machine Learning, optimization problems in which the true objective function
C(w) is defined as an expectationEzQ(z, w), are abundant. In practise, where we
have a finite dataset, the empirical objective functionCn(w) = 1

n

∑n
i=1 Q(zi, w) is

optimized instead. Classical optimization techniques compute the entire sum and its
gradient for every iteration. As available data sets grow ever larger, such “batch” opti-
mizers therefore become increasingly inefficient. They are also ill-suited for the online
(incremental) setting, where partial data must be modeled as it arrives.

Stochastic (online) gradient-based methods, by contrast, work with gradient esti-
mates obtained from small subsamples (mini-batches) of training data. This can greatly
reduce computational requirements on large, redundant data sets. Simple Stochas-
tic Gradient Descent has proven more effective than sophisticated second-order batch
methods (LeCun et al., 1998). Stochastic Meta-Descent (Schraudolph, 1999, 2002)
further accelerates stochastic gradient descent through online adaptation of the up-
date step, multiplying the stochastic gradient with a diagonal scaling matrix. A fur-
ther step in this is taken by (Schraudolph et al., 2007) with an online version of the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method where the scaling
matrix aims at approximating the inverse Hessian of the objective function.

We have looked at the theoretical foundations for using online updates that include
scaling matrices, in particular the fundamental limits for applying the existing quasi-
martingale framework (Fisk, 1965) and the super-martingale framework (Robbins and
Siegmund, 1971) to establish convergence. (Bottou and LeCun, 2004) have previously
presented results, based on (Fisk, 1965), where the scaling matrix is assumed to con-
verge and they have remarked that bounds on the eigenvalues of the scaling matrix
is the essential requirement to extend convergence guarantees beyond that. We need
such extented results to deal with the online BFGS since we can not guarantee con-
vergence of the scaling matrices for it. The author will present such requirements and
their derivation from Robbins and Siegmunds theorem which says that

Theorem 0.1. Let (Ω,F , P ) be a probability space andF1 ⊆ F2 ⊆ ... be a sequence
of subσ-fields ofF . LetUt, βt, ξt andζt, t = 1, 2, ... be non-negativeFt-measurable
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random variables such that

E(Ut+1 | Ft) ≤ (1 + βt)Ut + ξt − ζt, t = 1, 2, ... (1)

Then on the set{
∑

t βt < ∞,
∑

t ξt < ∞}, Ut converges a.s. to a random variable
and

∑
t ζt < ∞ a.s.

If we let ω∗ be the minimizer ofC(w), the equation

Et(‖ωt+1−ω∗‖2) = ‖ωt−ω∗‖2−2at(ωt−ω∗)T∇ωC(ωt)+a2
t E(‖∇ωQ(zt, ωt)‖2)

(2)
connects the theorem to updates on the formωt+1 = ωt − at∇ωQ(zt, ωt) under the
conditions

∑
at = ∞,

∑
a2

t < ∞ andinf(w̃−w∗)T (w̃−w∗)>ε(ω̃ − ω∗)T∇ωC(ω̃) > 0
for all ε > 0. The main problem with extending this to updates on the formωt+1 =
ωt − atBt∇ωQ(zt, ωt) whereBt is a positive and symmetric matrix is that the last of
the three conditions becomes complicated by having a matrix inserted between(w̃ −
w∗)T and∇ωC(ω̃). The maximum possible damage has to be assesed.

Some of the modifications of the BFGS algorithm that Schraudolph et al. (2007)
used, relate closely to controlling the eigenvalues of the scaling matrix, and it will
be discussed how these and other possible modifications relate to enforcing the de-
rived conditions. The conditions and the corresponding modifications that are required
depend to how large a class of objective functions we want to be able to optimize suc-
cesfully.
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