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The limited-memory Broyden-Flecher-Goldfarb-Shanno (LBFGS, Nocedal
and Wright, 1999) algorithm is the standard technique for large-scale nonlin-
ear optimization; it is scalable to very high-dimensional problems as it only
requires linear time and memory. Recently we have developed oLBFGS,
a stochastic variant of LBFGS for online optimization of convex functions
(Schraudolph et al., 2007). oLBFGS further increases convergence speed
by learning on small subsamples of data, and can outperform first-order
stochastic gradient methods as it inherits the curvature-invariant property
of standard LBFGS. Here we report on our work to extend oLBFGS to the
online training of Support Vector Machines (SVMs).

Let X be the space of observations, and Z the space of labels. Given
a set of labeled instances {xi, zi}ni=1 ⊂ X ×Z where X ⊆ Rn, a non-linear
SVM solves the following optimization problem:

min
f∈H

J(f) :=
c

2
‖f‖2H +

n∑
i=1

l(xi, zi, f), (1)

where l is a piecewise differentiable loss function l : X ×Z ×H → R, H is a
Reproducing Kernel Hilbert Space (RKHS) of functions on X and ‖ · ‖H is
the RKHS norm. The defining kernel 1 of H is k.

Since the gradient ∂fJ(f) is a member of the RKHS, we reformulate the
regularized risk (1) in terms of kernel function coefficients σ:

J(σ) :=
c

2
σ>Kσ +

n∑
i=1

l(zi,K
>
i σ), (2)

1For ease of exposition, we assume kernel function k does not depend on the value of
z.

1



where K is the kernel matrix and [K]i is the ith column of K. Then, the
gradient ∂σJ(σ) becomes

∂σJ(σ) = cKσ +
n∑

i=1

Ki∂l(zi,K
>
i σ)

= cKσ + Kξ, (3)

where ∂l(· , · ) denotes the partial derivative of the loss function w.r.t. its
second argument, and ξ is some vector in Rn. Using (3), the optimization
problem (2) can be solved via the following update

σt+1 ← σt − ηtBt∂σJ(σt), (4)

where ηt > 0 is a scalar step size and Bt is a positive definite matrix.
Note that if Bt = I, (4) becomes the standard gradient descent method.

Chapelle (2006) derives the Hessian matrix Ht = ∂2
σJ(σt) analytically and

obtains the Newton direction as Bt = H−1
t . Promising experimental results

notwithstanding, Newton’s method has intrinsic disadvantages:

1. The analytical Hessian may be singular, requiring ad-hoc modifications
to keep it invertible;

2. Fitting a non-sparse Hessian matrix into memory might not be feasible;

3. Inverting the Hessian may incur O(n3) complexity in the worse case.

Replacing Newton’s method by a limited-memory quasi-Newton method like
LBFGS addresses the above problems. To further accelerate the training
process, we are now applying our online version of LBFGS (oLBFGS) to
this situation. Our early experiments suggest that we can substantially
accelerate SVM training relative to the work of Chapelle (2006) on large-
scale problems. We expect to have compelling experimental results to report
at the workshop.
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