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Various models of Gaussian process mixture have been proposed, mainly to address the non-stationarity in regression
[1, 2, 3]. Typically, a Gaussian process mixture consists of M Gaussian processes F = {f1, f2, · · · , fM} with zero
mean and covariance function specified by parameters Θ = {θ1, θ2, · · · , θM}, and a gating network g. For any input
x, g(x) = [g1(x), g2(x), · · · , gM (x)] with

gm(x) ≥ 0,m = 1, 2, · · · ,M and
M∑

m=1

gm(x) = 1.

As in [1], the probability model is as follows. Given input X = {x1, x2, ..., xN}, we define the latent variable
Z = {z1, z2, ..., zN} to indicate which process each xi is involved in. The probability of Z, given the gating network
g and input X , is

P (Z|X, g) =
N∏

i=1

P (zi|xi, g) =
N∏

i=1

gzi(xi). (1)

The probability of the output Y = {y1, y2, ..., yN} is

P (Y |X, g, Θ) =
∑

Z

P (Y,Z|X, g, Θ) =
∑

Z

P (Y |X, Z, Θ)P (Z|X, g) (2)

where P (Y |X, Z, Θ) =
∏M

m=1 P ({yi : zi = m}|{xi : zi = m}; θm). Here, P ({yi : zi = m}|{xi : zi = m}; θm) is
the Gaussian distribution of all the yi generated by fm according to Z. The Gaussian process mixture given in equation
(1)-(2) is suitable for situation where the domain consists of different regimes that should be described by different
types of Gaussian processes. Unfortunately the regression based on equation (1)-(2) is generally intractable due to
the exponential number of summations in equation (2). Traditionally this problem is solved by sampling [1]. Our
method, instead, considers the Laplace approximation of P (Y |X, g, Θ), which is a Gaussian process with zero mean
and the covariance function as the GP mixture P (Y |X, g, Θ). Interestingly, this approximation becomes exact when
the gating network g gives us a hard partition of domain [3]. Easy to show that the covariance function of Gaussian
process mixture is:

E(yiyj |xi, xj , g, Θ) =
M∑

m=1

Km(xi, xj)P (zi = m, zj = m|xi, xj , g) (3)

where Km(xi, xj) is the covariance function associated with process fm. Using K̂(·, ·; g, Θ) to denote the covariance
function given in equation (3), our Laplace approximation of the likelihood of Y is PL(Y |X, K̂) = 1√

2πN |K̂X+σ2I|
exp(− 1

2y′(K̂X + σ2I)−1y), where σ2 is the variance of observation noise and K̂X is the covariance matrix evaluated
on X . We find a suitable gating network by maximizing the data likelihood PL.

Figure 1 and 2 show the regression results of our model on two toy examples. In these two experiments, we
considered the mixture of two Gaussian processes with covariance function of process fm, (m = 1, 2) specified as

Km(xi, xj) = exp(−||xi − xj ||2/s2
m), m = 1, 2

where sm is the width of the RBF kernel for the mth Gaussian process, which are chosen beforehand. We use the
same gating network used in [2] and fit it with gradient descent. We report the regression result given by the probability
PL(y|x,X, Y, Θ, K̂). As shown in the two figures, our model automatically finds the appropriate gating network and
yields regression result significantly better than the Gaussian process regression with either f1 or f2.
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(a) Output of g1
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(b) Regression result

Figure 1: The regression result.(b)Blue line: true curve. Blue stars: noisy observation. Black curve: f1, s
2
1 = 3 ; Red

curve: f2, s
2
2 = 0.05 ; Green curve: Laplace Approximation of mixture of {f1, f2} with fitted K.
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(b) Regression result

Figure 2: The regression result. (b) Blue line: truth. Blue stars: noisy observation. Black curve: f1, s
2
1 = 0.5 ; Red

curve: f2, s
2
2 = 0.01 ; Green curve: Laplace Approximation of mixture of {f1, f2} with fitted K.
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