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Various models of Gaussian process mixture have been proposed, mainly to address the non-stationarity in regression
[1, 2, 3]. Typically, a Gaussian process mixture consists of M Gaussian processes F' = {f1, fo, -+ , far} with zero
mean and covariance function specified by parameters © = {601,605, -- , 03/}, and a gating network g. For any input

z, 9(z) = [g1(2), g2(%), - - , gm (¥)] with
M
gm(x) >0,m=1,2,--- .M and Y gm(z) = 1.
m=1

As in [1], the probability model is as follows. Given input X = {1, zs,...,2x}, we define the latent variable
Z ={z, 22, ..., 2y } to indicate which process each z; is involved in. The probability of Z, given the gating network
g and input X, is

N N
P(Z|X.g) = [ [ P(zilzi, 9) = [ ] 2. (=2)- )
i=1 =1

The probability of the output Y = {y1,y2,...,yn } is
P(Y|X,9,0)=> P(Y,Z|X,9,0) => P(Y|X,Z,0)P(Z|X,g) 2)
z z

where P(Y|X,Z,0) = Hf\fil P({y; : z = m}{x; : zz = m}; 0,,). Here, P({y; : zi = m}|{zx; : z; = m};0p,) is
the Gaussian distribution of all the y; generated by f,,, according to Z. The Gaussian process mixture given in equation
(1)-(2) is suitable for situation where the domain consists of different regimes that should be described by different
types of Gaussian processes. Unfortunately the regression based on equation (1)-(2) is generally intractable due to
the exponential number of summations in equation (2). Traditionally this problem is solved by sampling [1]. Our
method, instead, considers the Laplace approximation of P(Y'| X, g, ©), which is a Gaussian process with zero mean
and the covariance function as the GP mixture P(Y|X, g, ©). Interestingly, this approximation becomes exact when
the gating network g gives us a hard partition of domain [3]. Easy to show that the covariance function of Gaussian
process mixture is:
M
E(yiyjlzi, z5,9,0) = Z K (xi, )Pz = m, z; = m|x;, xj, g) (3)

m=1

where K., (z;, ;) is the covariance function associated with process f,,,. Using K (-, g, 0) to denote the covariance
function given in equation (3), our Laplace approximation of the likelihood of Y is Pr(Y|X, K) = L

V2rN|Kx+021]
exp(—3y’ (K x + 02I)~1y), where o2 is the variance of observation noise and K x is the covariance matrix evaluated
on X. We find a suitable gating network by maximizing the data likelihood Pr,.

Figure 1 and 2 show the regression results of our model on two toy examples. In these two experiments, we
considered the mixture of two Gaussian processes with covariance function of process f,,,, (m = 1,2) specified as

Ko (i, 7;) = exp(—||z; — z;||*/s2,), m=1,2

where s,,, is the width of the RBF kernel for the m!" Gaussian process, which are chosen beforehand. We use the
same gating network used in [2] and fit it with gradient descent. We report the regression result given by the probability
Pr(ylz, X,Y, 0, K ). As shown in the two figures, our model automatically finds the appropriate gating network and
yields regression result significantly better than the Gaussian process regression with either f; or f.
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Figure 1: The regression result.(b)Blue line: true curve. Blue stars: noisy observation. Black curve: f,s? = 3 ; Red
curve: f,s2 = 0.05 ; Green curve: Laplace Approximation of mixture of { f;, fo} with fitted K.
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Figure 2: The regression result. (b) Blue line: truth. Blue stars: noisy observation. Black curve: fi,s7 = 0.5 ; Red
curve: fo,s2 = 0.01 ; Green curve: Laplace Approximation of mixture of {f1, fo} with fitted K.
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