
Conditional Random Fields for Reinforcement Learning

Xinhua Zhang, Douglas Aberdeen∗, S.V.N Vishwanathan
National ICT Australia

Locked Bag 8001
Canberra, Australia

firstname.lastname@nicta.com.au

Distributed reinforcement learning (RL) involves a collection of nodes, or agents, choosing actions to
maximise a long-term reward measure. Examples of such domains are traffic routing for roads or networks,
sensor networks, pursuer-evader problems, and job-shop scheduling. The simplest algorithms assume all
agents are independent, learning to cooperate only through a shared reward function. More advanced
algorithms explicitly share information about state, or factor the global reward into local rewards [1]. But
in all these cases each node chooses its action independently. A näıve fix is to make decisions sequentially,
allowing nodes to condition their actions on decisions that earlier nodes made.

However, we would much prefer that the nodes choose the optimal joint set of actions, taking into
account the actions of all other relevant nodes. We use conditional random fields (CRFs) to efficiently
model the conditional dependencies between agents. The same inference methods used for CRFs can
be used to sample node actions from a joint stochastic policy. We also show how to optimise this joint
policy by estimating the gradients of the long-term average reward with respect to the policy parameters.
Moreover, similar methods could be used for RL policies based on arbitrary graphical models.

CRFs are traditionally used to model P (y |x;θ), which is the probability of a set of labels y, con-
ditioned on observable variables x and the CRF parameters θ [4]. CRF training iterates through sets
of training instances {x,y}, finding θ∗ = arg maxθ p(θ|X, Y). To predict labels for a novel observation
x′ we select labels y′ = arg maxy P (y |x′;θ∗). To extend CRFs to online temporal processes Dynamic
Bayesian Networks (DBN) have been used, unfolding the CRF model over time. Another interpretation
of our work is that we show how CRF parameters can be adapted online for time-series prediction, and
control, without needing DBN models.

Our RL framework is that of distributed partially observable Markov decisions processes. Each RL
agent is represented by a node in the CRF. The input vector x represents the total set of observa-
tions/features presented to all the agents. Actions are equivalent to hidden labels y, each element in y rep-
resenting a single node’s action. The optimisation task is to find the CRF parameters θ such that sampling
joint actions y(t) from P (·|x(t);θ) maximises the long-term average reward R(θ) = limT→∞ 1/T

∑T
t=1 r(t)

(a discounted model may also be used).
The CRF/policy distribution is represented as an exponential family P (y |x;θ) = exp(〈φ(x,y),θ〉 −

z(θ|x)). Here φ is the sufficient statistic, a vector of features for nodes and edges; and z is the log partition
function z(θ|x) := ln

∑
y∈Y exp(〈φ(x, y),θ〉). Node features represent the observation of state available at

each node. The edge features encode the communication between nodes about their actions and features.
It is worth noting that this exponential family representation, with a dot product between features and
parameters, implements exactly the soft-max stochastic policy with linear feature combination commonly
encountered in RL applications. Only the edge features prevent trivial factorisation of the distribution
into independent agents.

Thus the policy distribution is complex to evaluate, however using CRFs allows the clique decompo-
sition theorem to come into play, decomposing the distribution into terms over maximal cliques c ∈ C of
the CRF graph so that P (x |y;θ) = exp(

∑
c∈C 〈φc(x,yc),θc〉 − z(θ|x)).

For example, in a 1D CRF (chain) the cliques are the set of all adjacent nodes i and j. An often useful
clique sufficient statistic in this case is φij(x, yi, yj) = [x, 1]> for connected nodes i, j if yi = yj , and [x, 0]>

otherwise, encoding whether neighbouring nodes are selecting the same action.
∗Topic: graphical models, control Preference: Oral/Poster

1

To evaluate and sample from this still complex distribution we enlist methods from graphical model
inference. For 1D CRFs dynamic programming can be used to efficiently compute P (x |y;θ). For 2D
CRFs, representing a mesh of RL agents, we employed the tree MCMC sampler [3].

But this does not solve the problem of optimisation. Policy-gradient (PG) algorithms are appealing
here because they directly optimise stochastic policies, rather than needing to infer values of actions. We
used the recent natural actor critic algorithm [5]. Such algorithms estimate ∇θR(θ) by generating trajec-
tories through the POMDP, following the current stochastic policy. At each step ∇θ log P (y(t) |x(t);θ) is
computed and added to a discounted eligibility trace e(t). In [2] it was shown that the one step estimate
of ∇θR(θ) = r(t) e(t). Stochastic gradient ascent can then be used to adjust the parameters at each step.
This is the core process of many policy gradient algorithms, including the natural actor-critic.

Our preliminary experiments are on an abstract traffic domain, illustrating a case where independent
RL nodes fail to find the optimal policy, despite a global reward. Nodes are arranged on an n × n grid.
Each node is responsible for a gate that allows traffic to flow vertically or horizontally. If all the gates
along a row or column of the graph align, then all buffered traffic at dummy boundary nodes will flow
through the graph in that step. A single misaligned gate blocks traffic, causing the length 10 buffer to fill
up as traffic arrives, possibly dropping traffic. Traffic units arrive with Pr=0.5 per time step per boundary
node. The reward is how many traffic units passed through the graph. Two features per node indicate
the number of traffic units waiting for the node to align vertically, and horizontally. Additionally, each
edge in the graph generates a feature of 1 if the two nodes agree on an alignment. The optimal policy is
for the all gates to align in the orientation of the most waiting traffic, but since each node only knows
how many traffic units are waiting for it, it must “negotiate” with neighbours on which way they wish to
align. The optimal reward is the grid size n. The left graph shows the CRF RL approach compared to a
näıve implementation with indepenent agents that do not use edge features (labelled NN-NAC). Averaged
over 100 runs per grid size, the CRF approach obtains the optimal reward all the way to grid size 10 (100
nodes), at which point some runs fail to reach the optimal policy. The right graph shows the number of
learning iterations.

3 4 5 6 7 8 9 10
0

2

4

6

8

10

Grid size n × n

O
pt

im
al

 r
ew

ar
d

NN + NAC
CRF + NAC

3 4 5 6 7 8 9 10
0

10

20

30

Grid size n × n

ite

ra
tio

ns
 (

×
10

3)

CRF + NAC

References

[1] J. Andrew Bagnell and Andrew Y. Ng. On local rewards and scaling distributed reinforcement learning. In
Proc. NIPS’2005, volume 18, 2006.

[2] J. Baxter and P.L. Bartlett. Infinite-horizon policy-gradient estimation. JAIR, 15:319–350, 2001.

[3] Firas Hamze and Nando de Freitas. From fields to trees. In UAI, 2004.

[4] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and
labeling sequence data. In ICML. Morgan Kaufmann, 2001.

[5] J. Peters, S. Vijayakumar, and S. Schaal. Natural actor-critic. In ECML 16, Porto, Portugal, pages 280–291.
Springer, 2005.

2

