A Tractable Approach to Finding Closest Truncated-hitting-time
Neighbors in Large Graphs

Purnamrita Sarkar (presenter)

PSARKARQCS.CMU.EDU

CALD,School of Computer Science,Carnegie Mellon University, Pittsburgh, PA 15213

Andrew Moore
Google Inc. Pittsburgh, PA 15213

Recently there has been much interest in graph-based
learning problems. This has applications in collabora-
tive filtering in recommender networks, link prediction
in social networks or fraud detection. These networks
can be consisting of millions of entities, and hence-
forth it is very important to develop highly efficient
techniques. We are specially interested in accelerating
random walk approaches to compute some very inter-
esting measures of these kinds of graphs. These met-
rics have been shown to do well empirically by authors
in (Liben-Nowell & Kleinberg, 2003), (Brand, 2005).

Let G be an undirected graph of vertices V', and edges
E. Each edge has a real-valued weight. In a random
walk the probability of moving from node i to neigh-
boring node j is proportional to the weight of the edge
w;j. The hitting time (Aldous & Fill, ) H(4,7) or h,;
is defined as the expected time to hit node j for the
first time starting at node i. The commute time c;;
between a pair of nodes is h;; + hj;. These measures
decrease if there are many short paths between the
nodes. On the other hand , as observed by (Liben-
Nowell & Kleinberg, 2003), two major setbacks are
that they tend to be small whenever one of the nodes
have a high degree, and they are also sensitive to parts
of the graph far away from the nodes, even when there
are short paths between the nodes.

To avoid these problems we define a T truncated hit-
ting time, where we only consider paths of length less
than 7. The measures described above can be com-
puted in closed form from the pseudo inverse of the
graph laplacian(Saerens et al., ). In most applications
this cubic computation is avoided by using sparse ma-
trix manipulation techniques (Brand, 2005). But it
is still expensive beyond a few thousand nodes. We
present a very novel algorithm to compute all-pairs of
approximate nearest neighbors in hitting times , with-

Category : Data Mining
Preference : Oral

AWMQGOOGLE.COM

Figure 1. Neighborhood of node j, we have drawn a di-
rected graph for clarity.

out computing the full matrix.

Lets start with the hitting times matrix H. The trun-
cated hitting time hz;- can be defined recursively as
hiTj =14+, pikhfjfl, where h is defined to be zero if
i=7j,orif T =0.

We compute upper and lower bounds of the h values,
and use them to return k e-approximate nearest neigh-
bors. Given k, and € we want to return any k neighbors
jofi,st. H(i,j) < H(i, kth_true_nearest_nb)(1 + ¢).
This is interesting since in all applications hitting and
commute times are used for ranking entities, e.g. rec-
ommend the k best movies based on choices already
made by an user; or, find the k£ most likely co-authors
of an author in a co-authorship network.

Suppose we want to estimate H;; for pairs of nodes
1,j which have relatively low H;; values, and suppose
we want to avoid n? time or space. So we cannot do
anything that requires representing or iterating over
all pairs of nodes. We in fact cannot even afford to
iterate over all pairs of nodes that are less than T" hops



A Tractable Approach to Finding Closest Truncated-hitting-time Neighbors in Large Graphs

Figure 2. Upper and lower bounds of H (i, )

apart. So suppose we restrict computation to iterate
only over some subset of pairs of nodes, which we will
call the APset. The interesting question is how good
are the upper and lower bounds we can get on Hjj,
Vi, j using only O(]AP|) work ?

For each node we consider its own neighborhood. Each
neighborhood has a boundary. Lets first assume that
the neighborhood is given. Its clear from the expres-
sion for truncated hitting time that h;; can be com-
puted from the hitting time of i’s neighbors to j. In
Figure 1 the random walk from 4 can hit either of its
neighbors G or B. Since G is inside the neighborhood
of j we already have an estimate of hg;. However B
is outside the neighborhood of j , and hence we do an
optimistic and pessimistic approximation of hp;, re-
sulting into an upper(HP) and lower(HO) bound of
h;j. The optimistic bound is obtained by allowing the
random walk to jump to the boundary node with clos-
est optimistic hitting time to j, and the pessimistic
bound arises from the fact that the walk might never
come back to the neighborhood after leaving it, i.e.
takes T time.

Lets now look at how to obtain the k ¢ approximate
nearest neighbors for each node. From figure 2 lets as-
sume that we want to find the 7 closest nearest neigh-
bors of node i. Now the 8" nearest neighbor’s hitting
time is greater than the 8" largest HO value. Now
we also allow a small error margin of e. Hence the new
upper bound becomes 8" largest_ HO(i, *)(1+¢). All
entities with upper bound less than this are guaran-
teed to be € approximate. We can see that in figure
2 all nodes but B are within € error of the true 8"
nearest neighbor of i. Hence the neighborhood of B
needs to be expanded in order to tighten h;p.

Now lets come to the topic of neighborhood expan-
sion. We start will all nodes within 1 or 2 hops of

the destination. We use different heuristics to find the
best nodes to put into the neighborhood of j. The
two most intuitive ones are to put all neighbors of the
boundary node with smallest HO value to j. This
ends up resulting in uniform surfaces around the des-
tination in the H space. We can also put the nodes m
s.t. ZkeAP(*,j) DPim 18 large. These nodes will tighten
loose bounds , since we effectively end up including
more and more probability mass within the neighbor-
hood.

Now lets look at how the AP set grows for different
graphs. We quantify a graph in terms of its intrinsic
dimensionality(R. Krauthgamer, 2003). Given a ball
of radius r this tells us how fast the size of the ball
grows w.r.t. . For example a grid has dimensionality
2, where as a k dimensional hypercube has a dimen-
sionality of k.

We include some initial experimental results on simu-
lated graphs. We generate graphs of dimensionality
k, by assigning k dimensional euclidian coordinates
to the nodes, and adding links between close neigh-
bors, and some long distance links. This brings about
the very famous small-world phenomenon (Kleinberg,
2000). Initial experiments show that we need relatively
small fractions of all pairs to get a good estimate of
the hitting times. E.g. for 1000 nodes, T' = 10, we can
find 10 nearest neighbors for each node using around
40000 pairs for e = .001, 20000 pairs for e = .01 , 14000
pairs for € = .05. This shows the tradeoff between time
complexity and accuracy of the algorithm.

References
Aldous, D., & Fill, J. A. Reversible markov chains.

Brand, M. (2005). A Random Walks Perspective on
Maximizing Satisfaction and Profit. SIAM ’05.

Kleinberg, J. (2000). The Small-World Phenomenon:
An Algorithmic Perspective. Proceedings of the 32nd
ACM Symposium on Theory of Computing.

Liben-Nowell, D., & Kleinberg, J. (2003). The link
prediction problem for social networks. CIKM ’03
Proceedings of the twelfth international conference
on Information and knowledge management.

R. Krauthgamer, J. R. L. (2003). The intrinsic dimen-
sionality of graphs. Proceedings of the 35th ACM
Symposium on Theory of Computing.

Saerens, M., Fouss, F., Yen, L., & Dupont, P. The
principal component analysis of a graph and its re-
lationships to spectral clustering.



