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Graphs constitute a most natural way to represent
problems involving finite or countable universes. This
might be especially so in the context of bio-informatics
(e.g. for protein-interaction graphs), collaborative fil-
tering, the analysis of social networks and citation
graphs, and to various problems in operations research
in the context of incomplete information. A further
argument for using graphs for characterizing learning
problems was found in the connection it makes to the
literature on network flow algorithms and other deep
results of combinatorial optimization problems.

This short note reviews results obtained in [3], and
extends results slightly towards an incremental set-
ting by exploiting a subresult of [4]. The relevance
for machine learning of this result can be seen e.g. in
a context of bio-informatics. Assume one has 1000
genes organized in an observed graph. The results of
this paper give probabilistic guarantees on hypothe-
ses which are proposed during the course of gather-
ing more label-information of the nodes. Suppose e.g.
one performs experiments to inspect wether a gene is
cancer-related or not. The result below quantifies the
increase of confidence in the optimal hypotheses of the
set of cancer-related genes at all times.

Transductive Learning on Weighted Graphs

Some notation is introduced. Let a weighted undi-
rected graph Gn = (V, E) consist of 1 < n < ∞ nodes
V = {vi}n

i=1 with edges E = {wij ≥ 0}i6=j with wij

connected to vi and vj for any i 6= j = 1, . . . , n. As-
sume that no loops occur in the graph, i.e. wii = 0 for
all i = 1, . . . , n, and that the graph G is connected, i.e.
there exists a path between any two nodes. This paper
considers problems where each node has a fixed corre-
sponding label yi ∈ {−1, 1} such that {(vi, yi)}n

i=1, but
only an index-subset Sm ⊂ {1, . . . , n} with |Sm| = m
of the labels is observed. The task in transductive
learning is to predict the labels of the unlabeled nodes
S−m = {1, . . . , n}\Sm. This paper uses the notation
q ∈ {−1, 1}n to denote a hypothesis {(vi, qi)}n

i=1 of the
true labeling {(vi, yi)}n

i=1.

This research track is boosted by results [2] on trans-
ductive learning, and by e.g. [1] on graph cuts for
learning (see [3] for a more complete literature re-
view). Results are further complemented in the con-
tribution [3] with the following results. The analysis
there starts off by fixing a weighted neighborhood-rule
rq : V → {−1, 1} as

rq(vi) = sign




n∑

j=1

qjwij


 . (1)

A specific hypothesis q ∈ {−1, 1}n is plausible if it
is consistent with itself, i.e. qi rq(vi) = 1 for all
i = 1 . . . , n. Let rn

q = (rq(v1), . . . , rq(vn))T . The cor-
responding hypothesis space is defined for fixed ρ ≥ 0
as

Hρ =
{

q ∈ {−1, 1}n
∣∣∣ g

(
q, rn

q

) ≥ ρ
}

, (2)

with g : {−1, 1}n × {−1, 1}n → R+ a function quanti-
fying the plausibility of the hypothesis. Main contribu-
tions of [3] are (i) an explicit form of g in terms of the
margin and average margin induced by the rule (1),
and the relationship to the graph cut; (ii) an explicit
characterization of this hypothesis space in terms of
the eigenvalue spectrum of the graph Laplacian; (iii)
an extension to the case where only positive samples
are observed; and (iv) the proposal of an efficient re-
laxation of the corresponding problem in terms of a
linear program. Recent results show further relations
to network flow problems and graph cut algorithms.

Incremental Assessment for Transductive
Learning

This section extends standard results to the incre-
mental case where the graph G is completely known,
and where an independent process (nature) gradually
presents new label information for the task. Let the se-
quence Π =

(
vπ(1), . . . , vπ(n)

)
which is followed in the

process be a random permutation. With some slightly
notational abuse, let vt = vπ(t) for all t = 1, . . . ,m (t



indexes the nodes in the unknown but fixed sequence).
The actual risk of a hypothesis q ∈ Hρ, and its empir-
ical counterpart at timestep t is defined as

R(q) =
1
n

n∑

i=1

I(qiyi < 0), Rt(q) =
1
t

t∑

i=1

I(qiyi < 0).

The incremental procedure goes for all t = 2, . . . , m:




1. Estimate q(t) ∈ Hρ based on G, {y1, . . . , yt−1}
2. Nature asks for randomly chosen node vj ∈ V

3. The algorithm presents q
(t)
j with confidence Rt(q(t))

4. A new experiment reveals yt ∈ {−1, 1}.

Remark that one can do better when j < t by return-
ing yj , but as this occurs not too often if m ¿ n, we
proceed as such for the moment being. Now one can
analyze how well the estimate of the risk correspond
with the actual risk. we use a result by Serfling [4] to
give a generalization bound in each stage of the incre-
mental process, which is surprisingly as tight as in the
batch case. The first result states that the difference
of the estimated risk of a fixed hypothesis q will con-
verge to the true risk during the incremental process
where one receives gradually new labels.

Theorem 1 (Incremental Serfling Bound) Let G
be fixed and observed, and let q ∈ {−1, 1}n be a fixed
hypothesis. The risk R(q) is defined as before, but the
empirical counterparts now become {Rt(q)}1≤t≤m. Let
C = m

n−m . With probability 1 − δ < 1, the following
inequality holds for all 1 ≤ t ≤ m:

R(q) ≤ Rt(q) +
(

n− t

t

)
C

√
2(n−m + 1)

nm
log

(
1
δ

)
.

Proof: This results immediately from a sub-result
in Serfling’s seminal paper [4], Corollary 1.1 and its
proof. Specifically, the martingale strategy used to
proof Serfling’s inequality uses the quantity

Un(ε; q) = P

(
max

1≤t≤m

tRt(q)− tR(q)
n− t

≤
(

m

n−m

)
ε

)
,

(3)
which is proven to be smaller than
exp

(
− 1

2mε2 n
n−m+1

)
. By reshuffling variables

n,m, t in (3), the following inequality fol-
lows P

(
max1≤t≤mR(q) ≥ Rt(q) + εC n−t

t

) ≤
e−( n

2(n−m+1) mε2),with C = m
n−m . Inverting the

statement proves the result. ¤
This result is especially convenient as it states a
result on a set of tests {R(q) −Rt(q)}1≤t≤m without
having to resort to an (often pessimistic) union bound
technique. It states that in an incremental scenario,

the uncertainty decreases as O (
n−t

t

)
. Taking the

limit limn→∞
2(n−m+1)

n = 2 and
(

n−t
t

) (
m

n−m

)
≤ m

t

one gets an expression for a graph with an infinite
number of nodes. The following practical expression
is immediate.

Corollary 1 (Incremental PAC Bound) With
probability 0 < 1 − δ < 1, the following inequality
holds for all 1 ≤ t ≤ m and for any q ∈ Hρ

R(q) ≤ Rt(q) +

(
n− t

t

)
C

.

√
2(n−m + 1)

nm

(
log(|Hρ|) + log

(
1

δ

))
.

This result follows as one can switch
’max1≤t≤m supq∈Hρ

’ to ’maxq∈Hρ
max1≤t≤m’, as

both domains 1 ≤ t ≤ m and Hρ are finite.

It becomes clear that those results open up new pos-
sibilities for research in the context of transductive
learning. In particular, it can be expected to help
in bridging the gap between the analysis of (deter-
ministic) mistake bounds (e.g. for the perceptron and
weighted majority rule) and the stochastic setting of
empirical risk minimization. A second interesting im-
plication can be found in the analysis of experimental
designs.
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