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Summary 
In computer systems, hidden faults can stochastically produce observable symptoms. These faults can be 
transient and a symptom can be produced by multiple possible faults. We introduce an algorithm that takes a 
time series of the presence or absence of observed symptoms and produces a current estimate of the probability 
over faults. We use this algorithm to isolate problems on the Internet that interfere with Microsoft s web 
servers delivering content. The algorithm is very scalable: we have done analysis of 1 billion observed HTTP 
requests, with over 10,000 possible hidden faults. 

The Problem 
Consider the following mathematical model. You have N hidden coins, each will come up heads with some 

probability, . Each of these coins corresponds to a hidden fault. We cannot observe the outcomes of the 

coins: the coins come in bags, where the same coin can lie in more than one bag. For each set of coin flips, 
someone will look in one bag of coins and tell us whether at least one of the coins is heads, or whether all of 
them are tails. Observing the bag corresponds to observing a symptom, where the symptom can have multiple 
possible underlying causes. The results of different bags are reported, repeatedly. How should we estimate the 

underlying probability of coin flips, ? 

The Algorithm 

We estimate the parameters 

 

with MAP estimation: . 

We use a noisy-OR model for each bag of coins, then assume that the bag observations, , follow a binomial 
distribution governed by the probability of each bag being true, . We use a beta prior for the coin flips.  We 

then find  

 

where 

; 

 

are the coins in the ith bag; and 

 

and 

 

depend on the parameters of the beta 

distribution. For numerical stability, we estimate the log odds, , of a coin flip: . 

We decided to use stochastic (on-line) gradient descent (SGD) to find the 

 

that maximize the posterior 

probability .  An unbiased estimate, , of the gradient w.r.t. is estimated by taking the gradient of 

the observation likelihood with respect to one observation ,  and dividing the gradient of the prior by L, the 
number of observations: 

 

In system applications, the observations are noisy and frequent. We use SGD with momentum in order to 
smooth the estimates: it is important to maintain low-noise estimates of 

 

in order to compute a good gradient 

. The update is then . 
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