
Tracking Time-Varying Hidden Faults using Stochastic Gradient Descent
John C. Pla t t , Emr e K c man , David A.

Maltz

Microsoft Research, 1 Microsoft Way, Redmond WA 98052

{jplatt, emrek, dmaltz}@microsoft.com

http://research.microsoft.com/{~jplatt,

~emrek,

~dmaltz}

Summary
In computer systems, hidden faults can stochastically produce observable symptoms. These faults can be
transient and a symptom can be produced by multiple possible faults. We introduce an algorithm that takes a
time series of the presence or absence of observed symptoms and produces a current estimate of the probability
over faults. We use this algorithm to isolate problems on the Internet that interfere with Microsoft s web
servers delivering content. The algorithm is very scalable: we have done analysis of 1 billion observed HTTP
requests, with over 10,000 possible hidden faults.

The Problem
Consider the following mathematical model. You have N hidden coins, each will come up heads with some

probability, . Each of these coins corresponds to a hidden fault. We cannot observe the outcomes of the

coins: the coins come in bags, where the same coin can lie in more than one bag. For each set of coin flips,
someone will look in one bag of coins and tell us whether at least one of the coins is heads, or whether all of
them are tails. Observing the bag corresponds to observing a symptom, where the symptom can have multiple
possible underlying causes. The results of different bags are reported, repeatedly. How should we estimate the

underlying probability of coin flips, ?

The Algorithm

We estimate the parameters

with MAP estimation: .

We use a noisy-OR model for each bag of coins, then assume that the bag observations, , follow a binomial
distribution governed by the probability of each bag being true, . We use a beta prior for the coin flips. We

then find

where

;

are the coins in the ith bag; and

and

depend on the parameters of the beta

distribution. For numerical stability, we estimate the log odds, , of a coin flip: .

We decided to use stochastic (on-line) gradient descent (SGD) to find the

that maximize the posterior

probability . An unbiased estimate, , of the gradient w.r.t. is estimated by taking the gradient of

the observation likelihood with respect to one observation , and dividing the gradient of the prior by L, the
number of observations:

In system applications, the observations are noisy and frequent. We use SGD with momentum in order to
smooth the estimates: it is important to maintain low-noise estimates of

in order to compute a good gradient

. The update is then .

http://research.microsoft.com/{~jplatt

Discussion
One strong advantage

underlying fault probabilities,

time and tracking these changes is critical to the operators managing the system.
property of systems applications
track the fluctuating fault probabilities by updating
then report the cu

Note that this problem is different from the standard medical diagnosis problem, which is commonly phrased
as finding the posterior margi
we are flooded with
exploit these multiple measurements to accurately determine the underlying marginal posterior probabilities.

The Application
As a web content
happen: an
Microsoft server
broken HTTP implementation
may have lost connectivity to M

We use SGD
modeled as
client s AS. Each HTTP connection eith
We update the probability of each fault once for every successful or failed HTTP connection. We use a step

size of 0.1 and a momentum

Experimental Results
First, we compared SGD to a full numerical optimization of the data log likelihood (with BFGS)
optimization quality and speed. We created a vector of 200 faults, each with occurrence probability drawn
from a Beta(0.05,1)
faults with noisy
probabilities

RMSE
Elapsed time (sec)

The full optimization is m
epochs (passes through the data)

high probability faults, but SGD rarely provides an estimate

estimates as low as

We tested SGD on a
problem to 2
problems.

the right figure

Discussion

One strong advantage

of SGD

underlying fault probabilities,

time and tracking these changes is critical to the operators managing the system.
property of systems applications
track the fluctuating fault probabilities by updating
then report the current estimate.

Note that this problem is different from the standard medical diagnosis problem, which is commonly phrased
as finding the posterior margi
we are flooded with symptoms: we need a fast algorithm to exploit multi
exploit these multiple measurements to accurately determine the underlying marginal posterior probabilities.

Application

content provider, Microsoft wants to prov
an HTTP connection

Microsoft server may have a problem
broken HTTP implementation
may have lost connectivity to M

se SGD

to dynamically determine the cause of
modeled as a bag of coins (potential faults). These faults include the server identity, the browser type, and the

AS. Each HTTP connection eith
We update the probability of each fault once for every successful or failed HTTP connection. We use a step

of 0.1 and a momentum

Experimental Results
First, we compared SGD to a full numerical optimization of the data log likelihood (with BFGS)
optimization quality and speed. We created a vector of 200 faults, each with occurrence probability drawn
from a Beta(0.05,1) distribution.
faults with noisy-OR links of probability 0.05. The
probabilities

and the elapsed time is shown below.

Elapsed time (sec)

he full optimization is m
(passes through the data)

high probability faults, but SGD rarely provides an estimate

as low as 10-7.

We tested SGD on a day when MSN had observed
problem to 2

ASes, in the same geogr

The left figure
the right figure is for a third AS that had intermittent problems throughout the day

of SGD over other optimization algor

underlying fault probabilities, . In systems applications,

time and tracking these changes is critical to the operators managing the system.
property of systems applications: symptom observations are plentiful
track the fluctuating fault probabilities by updating

rrent estimate.

Note that this problem is different from the standard medical diagnosis problem, which is commonly phrased
as finding the posterior marginals of a fault

symptoms: we need a fast algorithm to exploit multi
exploit these multiple measurements to accurately determine the underlying marginal posterior probabilities.

provider, Microsoft wants to prov
HTTP connection to Microsoft can

have a problem;
broken HTTP implementation; or the client s Internet service provider (called an Autonomous System
may have lost connectivity to Microsoft

to dynamically determine the cause of
a bag of coins (potential faults). These faults include the server identity, the browser type, and the

AS. Each HTTP connection eith
We update the probability of each fault once for every successful or failed HTTP connection. We use a step

of 0.1 and a momentum of 0.999 and zero strength on the prior.

Experimental Results

First, we compared SGD to a full numerical optimization of the data log likelihood (with BFGS)
optimization quality and speed. We created a vector of 200 faults, each with occurrence probability drawn

distribution.

We then created 100,000 observations
OR links of probability 0.05. The
the elapsed time is shown below.

Guess the prior
0.1637

0
he full optimization is more accurate,

(passes through the data) allowed for

high probability faults, but SGD rarely provides an estimate

.

day when MSN had observed
ASes, in the same geographical area (see plots below), which accounted for 95% of the HTTP

The left figure shows the fault probability
for a third AS that had intermittent problems throughout the day

over other optimization algor

In systems applications,

time and tracking these changes is critical to the operators managing the system.
symptom observations are plentiful

track the fluctuating fault probabilities by updating

Note that this problem is different from the standard medical diagnosis problem, which is commonly phrased
nals of a fault

vector given
symptoms: we need a fast algorithm to exploit multi

exploit these multiple measurements to accurately determine the underlying marginal posterior probabilities.

provider, Microsoft wants to prov
to Microsoft can

fail if any of a number of faults exists. For example:
;

the client software accessing the page may be a robot or worm with a
the client s Internet service provider (called an Autonomous System

icrosoft

because of a routing problem

to dynamically determine the cause of
a bag of coins (potential faults). These faults include the server identity, the browser type, and the

AS. Each HTTP connection either succeeds or fails (corresponding to a
We update the probability of each fault once for every successful or failed HTTP connection. We use a step

0.999 and zero strength on the prior.

First, we compared SGD to a full numerical optimization of the data log likelihood (with BFGS)
optimization quality and speed. We created a vector of 200 faults, each with occurrence probability drawn

We then created 100,000 observations
OR links of probability 0.05. The RMSE
the elapsed time is shown below.

For this

Guess the prior

accurate,

but between 13 and 264
allowed for

SGD. Note that SGD and BFGS both accurately estimate the

high probability faults, but SGD rarely provides an estimate

day when MSN had observed
aphical area (see plots below), which accounted for 95% of the HTTP

fault probability
for a third AS that had intermittent problems throughout the day

over other optimization algorithms is that it provides an on

In systems applications, the true underlying fault probabilities change over

time and tracking these changes is critical to the operators managing the system.
symptom observations are plentiful

the fault probabilities once per symptom observation, and

Note that this problem is different from the standard medical diagnosis problem, which is commonly phrased
vector given one observation of a set of symptoms. In our problem,

symptoms: we need a fast algorithm to exploit multi
exploit these multiple measurements to accurately determine the underlying marginal posterior probabilities.

provider, Microsoft wants to prov ide content reliably to our customers. This
fail if any of a number of faults exists. For example:

the client software accessing the page may be a robot or worm with a
the client s Internet service provider (called an Autonomous System

because of a routing problem

to dynamically determine the cause of failed HTTP connection
a bag of coins (potential faults). These faults include the server identity, the browser type, and the

er succeeds or fails (corresponding to a
We update the probability of each fault once for every successful or failed HTTP connection. We use a step

0.999 and zero strength on the prior.

First, we compared SGD to a full numerical optimization of the data log likelihood (with BFGS)
optimization quality and speed. We created a vector of 200 faults, each with occurrence probability drawn

We then created 100,000 observations
RMSE

of the MAP estimate to the true occurrence
For this

experiment, the code is written in Matlab.

BFGS
0.0039
1956

but between 13 and 264

times slower
. Note that SGD and BFGS both accurately estimate the

high probability faults, but SGD rarely provides an estimate

lower than 7x10

day when MSN had observed many failed connections
aphical area (see plots below), which accounted for 95% of the HTTP

fault probability of one of the 2 ASes that caused
for a third AS that had intermittent problems throughout the day

ithms is that it provides an on

the true underlying fault probabilities change over

time and tracking these changes is critical to the operators managing the system.
symptom observations are plentiful, with many observations per second

the fault probabilities once per symptom observation, and

Note that this problem is different from the standard medical diagnosis problem, which is commonly phrased
observation of a set of symptoms. In our problem,

symptoms: we need a fast algorithm to exploit multiple measurements. We also can
exploit these multiple measurements to accurately determine the underlying marginal posterior probabilities.

content reliably to our customers. This
fail if any of a number of faults exists. For example:

the client software accessing the page may be a robot or worm with a
the client s Internet service provider (called an Autonomous System

because of a routing problem

on the Inter

HTTP connections.
a bag of coins (potential faults). These faults include the server identity, the browser type, and the

er succeeds or fails (corresponding to a
We update the probability of each fault once for every successful or failed HTTP connection. We use a step

0.999 and zero strength on the prior.

First, we compared SGD to a full numerical optimization of the data log likelihood (with BFGS)
optimization quality and speed. We created a vector of 200 faults, each with occurrence probability drawn

We then created 100,000 observations, each connected
of the MAP estimate to the true occurrence
experiment, the code is written in Matlab.

SGD, 1 epoch
0.0178

7.4

times slower, depending on the
. Note that SGD and BFGS both accurately estimate the

lower than 7x10-3, while BFGS produces

many failed connections. SGD localized
aphical area (see plots below), which accounted for 95% of the HTTP

one of the 2 ASes that caused
for a third AS that had intermittent problems throughout the day

ithms is that it provides an on-line estimate of the

the true underlying fault probabilities change over

time and tracking these changes is critical to the operators managing the system. SGD leverages a nice
many observations per second

the fault probabilities once per symptom observation, and

Note that this problem is different from the standard medical diagnosis problem, which is commonly phrased
observation of a set of symptoms. In our problem,

ple measurements. We also can
exploit these multiple measurements to accurately determine the underlying marginal posterior probabilities.

content reliably to our customers. This
fail if any of a number of faults exists. For example:

the client software accessing the page may be a robot or worm with a
the client s Internet service provider (called an Autonomous System

on the Internet.

. Each HTTP connection is
a bag of coins (potential faults). These faults include the server identity, the browser type, and the

er succeeds or fails (corresponding to an outcome of a bag of coins).
We update the probability of each fault once for every successful or failed HTTP connection. We use a step

First, we compared SGD to a full numerical optimization of the data log likelihood (with BFGS)
optimization quality and speed. We created a vector of 200 faults, each with occurrence probability drawn

, each connected at random
of the MAP estimate to the true occurrence
experiment, the code is written in Matlab.

SGD, 1 epoch

SGD, 20 epochs
0.0178

depending on the
. Note that SGD and BFGS both accurately estimate the

, while BFGS produces

. SGD localized
aphical area (see plots below), which accounted for 95% of the HTTP

one of the 2 ASes that caused the major problem, while
for a third AS that had intermittent problems throughout the day.

line estimate of the

the true underlying fault probabilities change over

leverages a nice
many observations per second.

the fault probabilities once per symptom observation, and

Note that this problem is different from the standard medical diagnosis problem, which is commonly phrased
observation of a set of symptoms. In our problem,

ple measurements. We also can
exploit these multiple measurements to accurately determine the underlying marginal posterior probabilities.

content reliably to our customers. This does not always
fail if any of a number of faults exists. For example:

a specific
the client software accessing the page may be a robot or worm with a

the client s Internet service provider (called an Autonomous System

(AS)

HTTP connection is
a bag of coins (potential faults). These faults include the server identity, the browser type, and the

outcome of a bag of coins).
We update the probability of each fault once for every successful or failed HTTP connection. We use a step

First, we compared SGD to a full numerical optimization of the data log likelihood (with BFGS), to check for
optimization quality and speed. We created a vector of 200 faults, each with occurrence probability drawn

at random to the 200
of the MAP estimate to the true occurrence
experiment, the code is written in Matlab.

SGD, 20 epochs
0.0122

147
depending on the number of

. Note that SGD and BFGS both accurately estimate the

, while BFGS produces

. SGD localized the major
aphical area (see plots below), which accounted for 95% of the HTTP

major problem, while

line estimate of the

the true underlying fault probabilities change over

.

We

the fault probabilities once per symptom observation, and

Note that this problem is different from the standard medical diagnosis problem, which is commonly phrased
observation of a set of symptoms. In our problem,

exploit these multiple measurements to accurately determine the underlying marginal posterior probabilities.

always
a specific

the client software accessing the page may be a robot or worm with a
AS))

HTTP connection is
a bag of coins (potential faults). These faults include the server identity, the browser type, and the

outcome of a bag of coins).
We update the probability of each fault once for every successful or failed HTTP connection. We use a step

to check for
optimization quality and speed. We created a vector of 200 faults, each with occurrence probability drawn

to the 200

SGD, 20 epochs

number of
. Note that SGD and BFGS both accurately estimate the

aphical area (see plots below), which accounted for 95% of the HTTP
major problem, while

