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In this talk we investigate general techniques for designing simple approximately optimal policies for the
problems similar to the optimal design of experiments under a budget constraint. As a simplest example,
consider first the following ”coins” problem: We are given n coins and told that the probability p of obtaining
head on tossing coin 4 is distributed according to a known prior distribution R; over [0, 1]. We can toss any
coin any number of times — but we are limited to 100 tosses. If we wish to maximize the probability of heads,
how should we proceed? What happens if the coin has 3 or more outcomes?

The above is a classic problem in budgeted learning and can be posed in the bandit framework. We
are given a bandit with n arms. The reward when arm ¢ is played follows some fixed distribution R;. This
distribution is over K non-negative values {ai,as,...,ax}. In the above coins example, K was equal to 2.
We assume that 0 = a; < as...,ax = 1 by suitable scaling. The arms are assumed to be independent,
so that the distributions for any i are independent of the corresponding distributions for an i’ # . The
distributions R; are not known to the player, but the player knows the prior distribution R; from which the
corresponding R; is drawn. Whenever the arm ¢ is played, the player gets an outcome that depends on the
true fixed distribution R;. In case of the coin toss (K = 2), the R; will be the probability vector (1 — p;, p;)
corresponding to coin ¢ and we were told of the distribution of p;. The player can estimate R; by playing
the arm ¢ and observing the reward. There is a cost ¢; for playing arm 4 and a cost budget C' is given. The
arms are played in some adaptively determined order depending on the outcome of the previous plays, as
long as the total cost of playing does not exceed C'. When the budget C' is exhausted, each arm has been
played a certain number of times, we choose an arm which maximizes the posterior expected reward based
on the outcomes. The goal is to devise an adaptive budget-constrained exploration strategy whose expected
exploitation gain is maximized.

Computing the optimal solution to the above problem is NP-HARD even when at most one play is allowed
per arm [8, 1], and even with unit cost (¢; = 1) for any play [6]. Several heuristics have been proposed for the
budgeted multi-armed bandit problem [8, 9]. Extensive empirical comparison of these heuristics is presented
in [8]. They show that unlike the celebrated stochastic infinite-horizon discounted reward multi-armed
bandit problem [5, 10], the optimal policy in the budgeted case is not an index policy. Obtaining policies
with non-trivial bounds were posed as an open problem in [8].

Our Results. Based on our work in [7], we present simple policies for the budgeted multi-armed bandit
problem which are guaranteed to achieve 1/4 of the optimal exploitation gain. These represent the first
polynomial time algorithms which produce policies with any mon-trivial guarantees on the quality of the
policy generated. Our policy design is via a linear programming formulation and stochastic packing [3, 4,
2]. Our framework also extends naturally to solve Lagrangean variants where there is no explicit budget
constraint, and the optimization objective is the difference between the exploitation gain and the total cost
spent in exploration. The policies obtained through the linear program are natural and simple, and serve as
the basis for heuristics which empirically have near-optimal performance. Furthermore, though our policies
have natural interpretations based on retirement rewards, they are not index policies. This raises several
interesting issues including the applicability of our techiques to designing polynomial-time computable near-
optimal policies for more general Markov Decision Processes, and the possibility that the performance of
several well known index heuristics can be analyzed.
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