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In many applications in pattern recognition and machine learning, it is common practice to
represent data by feature vectors living in a Banach space, because the Banach space provides
powerful analytical techniques for data analysis usually not available for other representations. A
standard technique to solve a learning problem in a Banach space is to set up a smooth error
function, which is then minimized by using local gradient information.

But often, the data we want to learn about have no natural representation as feature vectors and
are more naturally represented in terms of finite structures such as, for example, point patterns,
strings, trees, lattices, or graphs. Such pattern recognition and machine learning problems arise in a
variety of applications, ranging from predicting the biological activity of a given chemical structure,
finding frequent substructures of a data set of chemical compounds, predicting the 3D-fold of a
protein given its amino sequence, and natural language parsing, to name just a few. In contrast
to feature vectors, the repository of algorithmic tools for data analysis that directly operate on
structured representations is sparse. In particular, the concept of a derivative for functions on
structures is missing, and therefore standard techniques based on local gradient information are
no longer applicable.

Standard approaches fit the data representation with the tools available, for example, they
transform structural data to feature vectors. The aim is to fit practice to theory. Possible pitfalls
are (i) a bias toward the tools in the sense that preprocessing of the data might result in a loss of
relevant structural information; and (ii) the reconstruction problem that asks for the data in their
”natural” representation given a data point in the space we work with. There are two main classes
of methods that apply the principle of assimilating the data to the tools, methods based on pairwise
proximity data [1,2,4-6,10] and methods that transform structures into vector spaces [2,3,8,9,11].

In this article, we follow the complementary approach by fitting theory to practice. We accom-
modate existing tools with the data representations, i.e. we make the following contributions:

To adopt analytical concepts like continuity and differentiability to finite structures, we de-
velop the theory of 7 -spaces. Given a metric vector space X and a finite set 7 of orthogonal
transformations on X, a T-space over X is defined by the quotient set X7 = {[x] : @ € X'}, where
[€] = {Tx : T € T} denotes the equivalence class of @ € X with respect to 7. The first result
states that certain classes of finite structures, called k-structures, are subsets of 7-spaces. A k-
structure is a finite structure that can be represented as a k-ary relation X C X*. Examples of
k-structures are vectors, point patterns, trees, or graphs. Since vectors are also k-structures, the
theory of 7-spaces generalizes the theory of vector spaces.

Suppose that X' is a Banach space. The key result of this contribution states that the gradient
of a smooth function f : X7 — R is a well-defined structure pointing in direction of steepest ascent.
This result allows us to optimize functions on structures using local gradient information for which
a vast amount of algorithms has been developed.



Based on the theory of 7-spaces, we present cost functions for a number of applications prob-
lems. These include the sample mean of a set of structures, mining frequent substructures, learning
in non-metric distance spaces, and (un)supervised learning with metric 7-spaces as input and/or
as output space. All proposed cost functions are locally Lipschitz and therefore only smooth almost
everywhere. To minimize the cost functions, we can apply techniques from nonsmooth optimiza-
tion. In a second contribution to this meeting [7], we consider 7 -linear discriminant functions as a
more detailed example of how to apply the theory of 7-spaces.
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