
T -Linear Discriminant Functions

Brijnesh J. Jain and Klaus Obermayer

Berlin University of Technology
Dept. of Electrical Engineering and Computer Science
Sekr. 2-1, Franklinstr. 28/29, 10587 Berlin, Germany

Linear discriminant functions constitute an elementary building block for
learning classifiers, and therefore have been investigated thoroughly. This aim
of this contribution is to generalize linear discriminant functions for finite struc-
tures such as point patterns, trees, lattices, or graphs. The proposed T -linear
discriminant functions for structures constitute an elementary building block
for constructing and analyzing large margin classifiers in the domain XT and
more complex supervised and unsupervised structural neural learning machines.
The results builds upon and extends the theory of T -spaces to be presented
in this meeting and we therefore presume the results and notations from the
corresponding abstract [2].

The most important findings of linear discriminant functions are based on
the algebraic and geometric properties of the inner product. Thus, to generalize
linear functions for finite structures, we first have to generalize the inner product.
A key problem is the absence of an addition for structures. Hence, it is impossible
to construct a similarity measure for structures that is bilinear. But we can define
a similarity measure for structures that has the same geometric properties as an
inner product. To this end, let XT be a T -space over the Euclidean space X .
Then the inner product 〈·, ·〉 on X induces a function

〈·, ·〉T : XT ×XT → R,
(
[x], [y]

)
�→ max

{
〈x′, y′〉 : x′ ∈ [x], y′ ∈ [y]

}
,

where [x] denotes the equivalence class of all possible vector representations of a
structure (see [2]). The inner T -product 〈·, ·〉T gives rise to a norm-like function

‖·‖T : XT → R, [x] �→
√
〈[x], [x]〉T ,

which together with the T -norm satisfies the Cauchy-Schwarz inequality. Hence,
the inner T -product has the same geometrical properties as the standard inner
product although it is not bilinear.

Using the inner T -product, we define a T -linear discriminant function by

y([x]) : XT → R, [x] �→ 〈[w], [x]〉T +b,

where [x] is an input structure, [w] is a weight structure and b ∈ R the bias. The
discriminant y([x]) implements a two-category classifier in the obvious way: An
input structure [x] is assigned to class C1 if y(x) ≥ 0 and to class C2 otherwise.

Geometrical interpretation: In the Euclidean space X , the decision boundary
H([w], b) ⊆ X consists of all vectors x for which y([x]) = 0. Geometrically,



H([w], b) is a convex polytope composed of hyperplane segments, each of which
is tangent to the sphere with center 0 and radius b/ ‖[w]‖T . The directions of
the hyperplanes segments S(w′, b) are determined by the corresponding normal
vectors w′ ∈ [w]. The segments are defined by the cone of all vectors x having
closest angle to w′ over all elements from from [w].

Learning: Suppose that Z = {([x1], y1), . . . , ([xk], yk)} ⊆ XT ×{±1} is a training
set consisting of k input-output pairs. According to the principle of empirical
risk minimization, the goal is to find a weight structure [w∗] and bias b∗ that
minimizes some cost function, for example the generalized perceptron criterion
function [1]

F ([w], b) =
k∑

i=1

max
{
0,−yi ·

(
〈[xi], [w]〉T +b

)}
.

The cost function is locally Lipschitz, and therefore smooth almost everywhere.
Hence, we can use subgradient methods from nonsmooth optimization to mini-
mize F .

Suppose that the i-th example is misclassified. We adjust [w] and b according
to the following update rule

[w]← [w + ηyix
∗
i ],

where η is the learning parameter and x∗
i ∈ [xi] a representation satisfying the

equation
〈w, x∗

i 〉 = 〈[w], [xi]〉T and b← b + ηyi.

Provided that the learning rate is decreased at each update step t such that∑
t ηt → ∞ and

∑
t η2

t < ∞ and provided there exists a solution [w∗] and
b∗ with F ([w∗], b∗) = 0, then the algorithm generates sequences ([wt])t∈N and
(bt)t∈N that converge to a solution of the separable training sample. As opposed
to the standard perceptron convergence theorem, this convergence result only
guarantees to converge to a solution of a separable problem in the limit after an
infinite rather than finite number of update steps. Thus, from a practical point
of view, there is (so far) no guarantee that we actually obtain a solution in the
separable case.

It is unclear, how to derive a stronger convergence result. The key problem
is that the direction of descent is not unique at nonsmooth points, which can
introduce oscillations. We assume that infinite oscillations only occur in patho-
logical cases, because the set of nonsmooth points is a set of Lebesgue measure
zero. Our assumption is also supported by first experiments using synthetic data,
where separable problems are solved after a finite number of update steps. Hence,
further research aims at deriving conditions that ensure finite convergence.
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