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Abstract

We present a framework that greatly simplifies the evaluations and analyses for optimization in the
complex plane through the use of a generalized definition of analyticity. We show how the gradient, relative
(natural) gradient, Newton, and Newton variation updates can be easily derived within the framework.
We demonstrate application of the framework for training of a multi-layer perceptron network and for
performing complex-valued independent component analysis.

Summary

Complex-valued signals arise frequently in applications as diverse as communications, radar, and biomedicine,
as most practical modulation formats are of complex type and applications such as radar and magnetic
resonance imaging lead to data that are inherently complex valued. When the processing has to be done in
a transform domain such as Fourier or complex wavelet, again the data are complex valued. The complex
domain not only provides a convenient representation for these signals but also a natural way to preserve the
physical characteristics of the signals and the transformations they go though, such as the phase and magnitude
distortions a communications signal experiences. In this case, the processing also needs to be carried out in
the complex domain in such a way that the complete information—represented by the interrelationship of the
real and imaginary parts or the magnitude and phase of the signal—can be fully utilized. In this context,
both the approximation (choice of filter structure) and the optimization (algorithm derivation) problems have
to be carefully addressed. The complex domain, however, presents unique challenges for each, and as a result,
most of the algorithms derived for the complex domain have taken shortcuts limiting their usefulness.

In terms of the filter structures utilized, a strictly linear filter has been the dominant filter type—rather
than a widely-linear filter [1]—and for the nonlinear case, boundedness has been emphasized and “split”-type
functions that process the real and imaginary parts (or the magnitude and phase) of the signal separately
have been most commonly used, see e.g. [2], [3], [4]. Not surprisingly, both approaches fail to fully utilize the
information in the real and imaginary channels and lead to suboptimal solutions, especially when the signals are
noncircular [5], [6], [7], i.e., have probability density functions (pdfs) that are not rotation-invariant. However,
a great number of signals of interest, such as communications signals and magnetic resonance imaging data
are noncircular [8], [9]. Another difficulty arises as the derivation of algorithms involves optimization of a
cost function, which is typically real valued and hence non-analytic in the complex domain. The problem is
more pronounced when these cost functions involve split type nonlinear functions, which themselves are also
non-analytic. In the derivations, either optimization is carried out using gradients defined by combining the
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gradients of real and imaginary parts, or by defining appropriate transformations C" + R?" or C" + C?" and
working with gradient vectors or Hessian matrices in this new space [10]. Though these approaches facilitate
working in the complex domain, they might lead to redundant representations and usually involve matrices
with special block structures. Thus a number of simplifying assumptions are usually done most common of
which is circularity to render the analysis and derivations tractable (see e.g. [2], [3]).

We show how an elegant result due to Brandwood [11] can be used to introduce a framework for complex-
valued learning such that all computations can be carried out in the complex domain. We derive the gradient,
relative (natural) gradient, Newton, and the Newton variation updates within the framework. We show how the
framework easily accommodates the use of fully complex functions rather than the more commonly utilized
bounded but non-analytic functions with an application of training of the multilayer perceptron network.
These fully complex functions have recently been shown to provide universal approximation of arbitrary
functions in the complex domain with domains of convergence dependent on the type of their singularities [12].
Also, these functions provide attractive alternatives for performing independent component analysis (ICA) by
efficiently generating higher-order statistical information. We also present examples of the application of the
framework for deriving efficient algorithms to perform ICA in the complex domain, which bypass the the need
for simplifying assumptions such as circularity of sources in the derivation and the analysis of the algorithms.
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